阿里云百炼
一站式大模型开发与应用构建平台(免费领5.5折优惠券)
Scikit-Learn 是 Python 机器学习库,广泛应用在数据挖掘和数据分析。Scikit-Learn提供简单高效的工具,支持多种机器学习算法,包括分类、回归、聚类和降维等。Scikit-Learn设计简洁、易用,且与 NumPy 和 SciPy 等科学计算库无缝集成。Scikit-Learn 以其实用性、高性能和丰富的算法实现而闻名,适合从初学者到专家的各个层次的用户。Scikit-Learn提供详尽的文档和示例,帮助用户快速上手并解决实际问题。
pip install -U scikit-learn
conda install -c conda-forge scikit-learn
import numpy as npimport pandas as pdfrom sklearn import datasetsfrom sklearn.model_selection import train_test_splitfrom sklearn.preprocessing import StandardScalerfrom sklearn.linear_model import LogisticRegressionfrom sklearn.metrics import accuracy_score, classification_report
# 加载鸢尾花数据集iris = datasets.load_iris()X = iris.datay = iris.target
# 使用 Pandas 加载 CSV 文件data = pd.read_csv('your_dataset.csv')X = data.drop('target_column', axis=1)y = data['target_column']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()X_train = scaler.fit_transform(X_train)X_test = scaler.transform(X_test)
model = LogisticRegression()model.fit(X_train, y_train)
y_pred = model.predict(X_test)accuracy = accuracy_score(y_test, y_pred)print(f'Accuracy: {accuracy:.2f}')print(classification_report(y_test, y_pred))
new_data = np.array([[5.1, 3.5, 1.4, 0.2]]) # 示例新数据new_data = scaler.transform(new_data) # 标准化prediction = model.predict(new_data)print(f'Prediction: {prediction}')
import joblibjoblib.dump(model, 'model.pkl')
model = joblib.load('model.pkl')